LP28019

10V/1.2A Single-chip Li-ion and Li-POL Charge

General Description

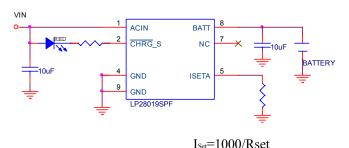
The LP28019 is a complete constant-current/ constant-voltage linear charger for single cell lithium-ion batteries. Its TDFN-10 package and low external component count make the LP28019 ideally suited for portable applications. Furthermore, the LP28019 is specifically designed to work within USB power specifications. Its have a over voltage protection in input with 6.5V and support over zero voltages of battery can charge enable.

No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be ISET rammed externally with a single resistor. The LP28019 automatically terminates the charge cycle when the charge current drops to 1/10th the ISET rammed value after the final float voltage is reached.

When the input supply (wall adapter or USB supply) is removed, the LP28019 automatically enters a low current state, dropping the battery drain current to less than $2\mu A$. The LP28019 can be put into shutdown mode, reducing the supply current to $25\mu A$.

Other features include charge current monitor, undervoltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage.

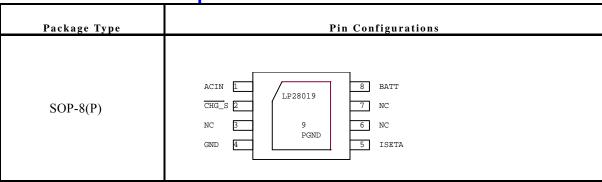
Order Information


Applications

- ♦ Portable Media Players/MP3 players
- Cellular and Smart mobile phone
- ♦ PDA/DSC
- ♦ Bluetooth Applications

Features

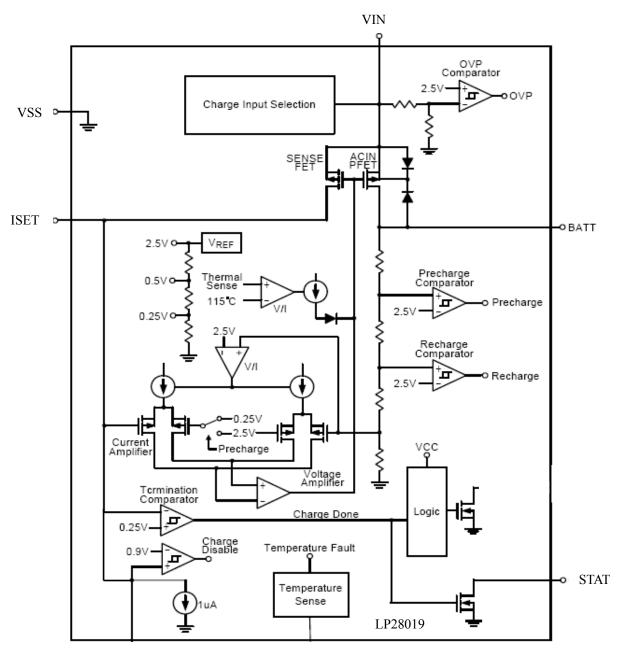
- Very Low Power Dissipation
- Vin Over Voltage Protection: 6.5 V
- Short-circuit protection
- Programmable Charge Current Up to 1500mA
- No MOSFET, Sense Resistor or Blocking Diode Required
- Constant-Current/Constant-Voltage Operation with Thermal Regulation to Maximize Charge Rate Without Risk of Overheating
- Charges Single Cell Li-Ion Batteries Directly from USB Port
- ●25µA Supply Current in Shutdown
- Time Pre-charge Conditioning With Safety Timer Reverse Leakage Protection Prevents Battery
- Drainage Charge Current Thermal Regulation Status Outputs for LED or System Interface
- Indicates Charge and Fault Conditions
- Optional Battery Temperature Monitoring Before and During Charge Automatic Sleep Mode for Low-Power
- Consumption Available in SOP-8P Package
- RoHS Compliant and 100% Lead (Pb)-Free


Typical Application Circuit

Marking Information

Please see website.

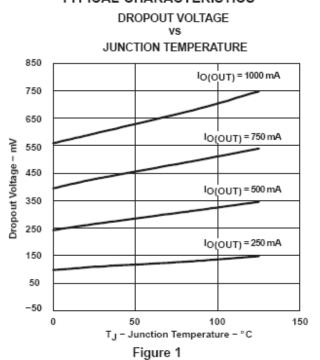
Functional Pin Description



Pin Description

PIN	PIN Number	DESCRIPTION		
VIN	1	VIN is the input power source. Connect to a wall adapter.		
STAT	2	Open-Drain Charge Status Output. When the battery is charging, the STAT pin is pulled low by an internal N-channel MOSFET. When the charge cycle is completed, the pin is pulled High.		
NC	3,6,7	No connector.		
VSS/PGND	4,9	VSS is the connection to system ground.		
ISET	5	Charge Current Program, Charge Current Monitor and Shutdown Pin. The charge current is programmed by connecting a 1% resistor(R_{PROG})to ground. When charging in constant-current mode, this pin servos to 1V. In all modes, the voltage on this pin can be used to measure the charge current using the following formula: $I_{BAT} = (V_{PROG}/R_{PROG}) \cdot 1000$		
BATT	8	VBAT is the connection to the battery. Typically a $1\mu F$ Tantalum capacitor is needed for stability when there is no battery attached. When a battery is attached, only a $0.1\mu F$ ceramic capacitor is required.		

Function Block Diagram

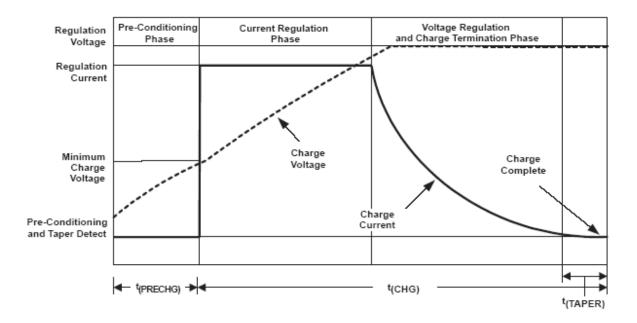
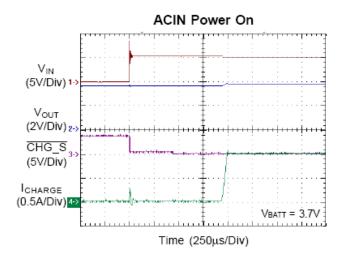
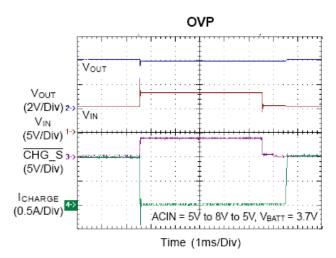
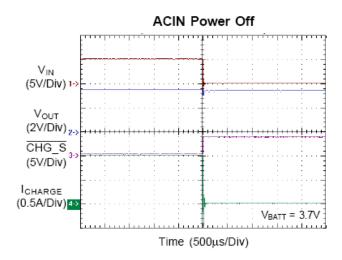

Absolute Maximum Ratings

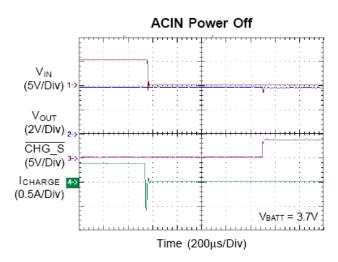
\$	Input Voltage to GND (VIN)	2.6V to 10V
\$	BAT, ISET, STAT (VX) 0.3V to V	/IN+0.3V
	BAT Short-Circuit DurationC	ontinuous
	BAT Pin Current	1500mA
	Maximum Junction Temperature	125°C
	Operating Junction Temperature Range (TJ)	C to 85°C 260°C
Thermal In	nformation	
\$	Maximum Power Dissipation (PD,TA<40°C)	1.5W
\$	Thermal Resistance (JA)	46°C/W

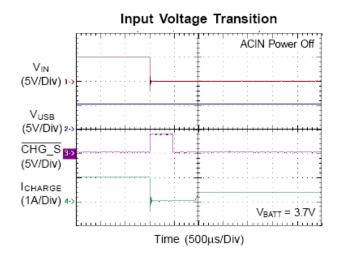
Electrical Characteristics (The specifications which apply over the full operating temperature range, otherwise specifications are at $TA = 25^{\circ}C$. VCC = 5V, unless otherwise noted.)

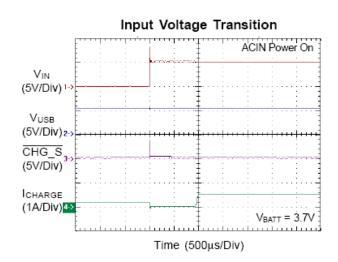
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS	
Vin	Adapter/USB Voltage Range		2.65	5	7	V	
Icc		Charge Mode (Note 4), RISET = 10k Standby Mode (Charge Terminated)		300	2000		
	Input Supply Current	Shutdown Mode (RISET Not Connected,		200	500	uA	
		VCC < VBAT, or VCC < VUV)		25	50		
VFLOAT	Regulated Output (Float) Voltage	0°C ≤ Ta ≤ 85°C, IBAT = 40mA	4.158	4.2	4.242	V	
		RISET = 1k, Current Mode RISET = 2k, Current Mode		1000		mA	
Іват		Standby Mode, VBAT = 4.2V	0	50	-		
IDAI	B/(1 1 III Galletit	Shutdown Mode (RISET Not	0	-2.5 ±1	-6 ±2		
		Connected) Sleep Mode, Vcc = 0V		±1	± 2	uA	
İtrikl	Trickle Charge Current	VBAT < VTRIKL, RISET = 2k (Note 5)		50		mA	
Vtrikl	Trickle Charge Threshold Voltage	RISET = 10k, VBAT Rising (Note 5)	2.8	2.9	3.0	V	
VTRHYS	Trickle Charge Hysteresis Voltage	RISET = 10k (Note 5)	60	80	110	mV	
Vuv	Vcc Undervoltage Lockout Threshold	From Vcc Low to High	3.7	3.8	3.95	V	
Vuvhys	Vcc Undervoltage Lockout Hysteresis		150	200	300	mV	
	Manual Chutdawa Threehald Valtage	ISET Pin Rising	1.15	1.21	1.30	V	
VMSD	Manual Shutdown Threshold Voltage	ISET Pin Falling	0.9	1.0	1.1	V	
	VCC - VBAT LOCKOUL THIESHOLD	Vcc from Low to High	70	100	140	mV	
VASD		Vcc from High to Low	5	30	50	mV	
	C/10 Termination Current Threshold	RISET = 10k (Note 6)	0.085	0.10	0.115	mA/mA	
ITERM	C/10 Termination Current Threshold	RISET = 2k	0.085	0.10	0.115	mA/mA	
VISET	ISET Pin Voltage	RISET = 10k, Current Mode	0.9	1.0	1.1	V	
ISTAT	STAT Pin Weak Pull-Down Current	VSTAT = 5V	8	20	35	uA	
VSTAT	STAT Pin Output Low Voltage	ISTAT = 5mA		0.35	0.6	V	
ΔV RESTAT	Recharge Battery Threshold Voltage	VFLOAT - VRESTAT	100	150	200	mV	
TLIM	Junction Temperature in Constant Temperature Mode				120	°C	
Ron	Power FET "ON" Resistance (Betwee	n Vcc and BAT)			600	mΩ	
tss	Soft-Start Time	IBAT = 0 to IBAT =850V/RISET		100		uS	
IISET	ISET Pin Pull-Up Current			3		uA	
VIN OVP	Over voltage protection		5.9	6.2	6.5	V	

TYPICAL CHARACTERISTICS


Figure 2. Typical Charging Profile


Typical Operating Characteristics



Operation

The LP28019 is a single cell lithium-ion battery charger using a constant-current/constant-voltage algorithm. It can deliver up to 1200mA of charge current (using a good thermal PCB layout) with a final float voltage accuracy of ±1%. The LP28019 includes an internal P-channel power MOSFET and thermal regulation circuitry. No blocking diode or external current sense resistor is required; thus, the basic charger circuit requires only two external components. Furthermore, the LP28019 is capable of operating from a USB power source.

Normal Charge Cycle

A charge cycle begins when the voltage at the V_{CC} pin rises above the UVLO threshold level and a 1% ISET ram resistor is connected from the ISET pin to ground or when a battery is connected to the charger output. If the BAT pin is less than 2.9V, the charger enters trickle charge mode. In this mode, the LP28019 supplies approximately 1/10 the ISET rammed charge current to bring the battery voltage up to a safe level for full current charging. (Note: The LP28019X does not include this trickle charge feature).

When the BAT pin voltage rises above 2.9V, the charger enters constant-current mode, where the ISET rammed charge current is supplied to the battery. When the BAT pin approaches the final float voltage (4.2V), the LP28019 enters constant-voltage mode and the charge current begins to decrease. When the charge current drops to 1/10 of the ISET rammed value, the charge cycle ends.

ISET ramming Charge Current

The charge current is ISET rammed using a single resistor from the ISET pin to ground. The battery charge current is 1000 times the current out of the ISET pin. The ISET ram resistor and the charge current are calculated using the following equations:

 $R_{\text{SET}}=1000V/I_{\text{CHG}}$, $I_{\text{CHG}}=1000V/R_{\text{SET}}$

The charge current out of the BAT pin can be determined at any time by monitoring the ISET pin voltage using the following equation:

 $I_{BAT} = V_{SET} \times 1000/R_{SET}$

Charge Termination

A charge cycle is terminated when the charge current falls to 1/10th the ISET rammed value after the final float voltage is reached. This condition is detected by using an internal, filtered comparator to monitor the ISET pin. When the ISET pin voltage falls below 100mV^1 for longer than t_{TERM} (typically 1ms), charging is terminated. The charge

current is latched off and the LP28019 enters standby mode, where the input supply current drops to $200\mu A$. (Note: C/10 termination is disabled in trickle charging and thermal limiting modes).

When charging, transient loads on the BAT pin can cause the ISET pin to fall below 100 mV for short periods of time before the DC charge current has dropped to 1/10 th the ISET rammed value. The 1ms filter time (t_{TERM}) on the termination comparator ensures that transient loads of this nature do not result in premature charge cycle termination. Once the average charge current drops below 1/10 th the ISET rammed value, the LP28019 terminates the charge cycle and ceases to provide any current through the BAT pin. In this state, all loads on the BAT pin must be supplied by the battery.

The LP28019 constantly monitors the BAT pin voltage in standby mode. If this voltage drops below the $4.05\mathrm{V}$ recharge threshold ($\mathrm{V}_{\mathrm{RESTAT}}$), another charge cycle begins and current is once again supplied to the battery. To manually restart a charge cycle when in standby mode, the input voltage must be removed and reapplied, or the charger must be shut down and restarted using the ISET pin. Figure 1 shows the state diagram of a typical charge cycle.

Charge Status Indicator (STAT)

The charge status output has three different states: strong pull-down (~10mA), weak pull-down (~20 μ A) and high impedance. The strong pull-down state indicates that the LP28019 is in a charge cycle. Once the charge cycle has terminated, the pin state is determined by undervoltage lockout conditions. A weak pull-down indicates that $V_{\rm CC}$ meets the UVLO conditions and the LP28019 is ready to charge. High impedance indicates that the LP28019 is in undervoltage lockout mode: either $V_{\rm CC}$ is less than 100mV above the BAT pin voltage or insufficient voltage is applied to the $V_{\rm CC}$ pin. A microprocessor can be used to distinguish between these three states—this method is discussed in the Applications Information section.

Thermal Limiting

An internal thermal feedback loop reduces the ISET rammed charge current if the die temperature attempts to rise above a preset value of approximately 120°C. This feature protects the LP28019 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the LP28019. The charge current can be set according to typical (not worst-case) ambient temperature with the

assurance that the charger will automatically reduce the current in worst-case conditions. TDFN power considerations are discussed further in the Applications Information section.

Undervoltage Lockout (UVLO)

An internal undervoltage lockout circuit monitors the input voltage and keeps the charger in shutdown mode until V_{CC} rises above the undervoltage lockout threshold. The UVLO circuit has a built-in hysteresis of 200mV. Furthermore, to protect against reverse current in the power MOSFET, the UVLO circuit keeps the charger in shutdown mode if V_{CC} falls to within 30mV of the battery voltage. If the UVLO comparator is tripped, the charger will not come out of shutdown mode until V_{CC} rises 100mV above the battery voltage.

Manual Shutdown

At any point in the charge cycle, the LP28019 can be put into shutdown mode by removing $\boldsymbol{R}_{\text{ISET}}$ thus floating the ISET pin. This reduces the battery drain current to less than 2μA and the supply current to less than 50μA. A new charge cycle can be initiated by reconnecting the ISETram resistor.

In manual shutdown, the STAT pin is in a weak pull-down state as long as V_{CC} is high enough to exceed the UVLO conditions. The STAT pin is in a high impedance state if the LP28019 is in undervoltage lockout mode: either V_{CC} is within 100mV of the BAT pin voltage or insufficient voltage is applied to the V_{CC} pin.

Automatic Recharge

Once the charge cycle is terminated, the LP28019 continuously monitors the voltage on the BAT pin using a comparator with a 2ms filter time (t_{RECHARGE}). A charge cycle restarts when the battery voltage falls below 4.05V (which corresponds to approximately 80% to 90% battery capacity). This ensures that the battery is kept at or near a fully charged condition and eliminates the need for periodic charge cycle initiations. STAT output enters a strong pull-down state during recharge cycles.

Power Dissipation

The conditions that cause the LP28019 battery charger to reduce charge current through thermal feedback can be approximated by considering the total power dissipated in the IC. For high charge currents, the LP28019 power dissipation is approximately:

$$P_{D} = (V_{ADP} - V_{BAT}) \times I_{CHG} + P_{D}_{BUCK} + (V_{INA} - V_{OUTA}) \times I_{OUTA}$$

Where PD is the total power dissipated within the IC, ADP is the input supply voltage, VBAT is the battery voltage, IBAT is the charge current and PD BUCK is the power dissipation due to the regulator. PD BUCK can be calculated as:

$$P_{D_BUCK} = V_{OUTB} \times I_{OUTB} \left(\frac{1}{\eta} - 1\right)$$

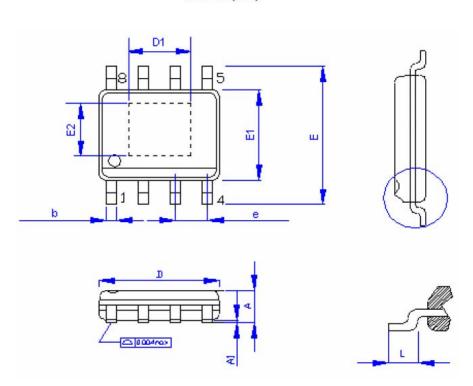
Where VOUTB is the regulated output of the switching regulator, IOUTB is the regulator load and is the regulator efficiency at that particular load.

It is not necessary to perform worst-case power dissipation scenarios because the LP28019 will automatically reduce the charge current to maintain the die temperature at approximately 125°C. However, the approximate ambient temperature at which the thermal feedback begins to rotect the IC is:

$$\begin{split} &T_{A}=115^{\circ}\,C-P_{D}^{\theta}J_{A}\\ &T_{A}=115^{\circ}\,C-\left(V_{ADP}-V_{BAT}\right)\times I_{CHG}^{}\times\theta J_{A} \end{split}$$
 if the regulator is off.

Example: Consider the extreme case when an LP28019 is operating from a 6V supply providing 250mA to a 3V Li-Ion battery, the switching regulator and the LDO are off. The ambient temperature above which the LP28019 will begin to reduce the 250mA charge current is approximately: (Correctly soldered to a 2500mm² double-sided 1 oz. copper board, the LP28019 has a thermal resistance of approximately 43°C/W.)

$$T_A = 115^{\circ} C - (6V - 3V) \times (250 \text{mA}) \times 43^{\circ} C / W$$
 $T_A = 115^{\circ} C - 0.75 \text{W} \times 43^{\circ} C / W = 115^{\circ} C - 32.25^{\circ} C$
 $T_{\overline{A}} = 82.75^{\circ} C$


If there is more power dissipation due to the switching regulator or the LDO, the thermal regulation will kick in at a somewhat lower temperature than this. In the above circumstances, the LP28019 can be used above 82.75°C, but the charge current will be reduced from 250mA. The approximate current at a given ambient temperature can be calculated:

Note: 1V = 1J/C = 1W/A

Furthermore, the voltage at the ISET pin will change proportionally with the charge current as discussed in the ISET ramming Charge Current section.

Packaging Information

SOP-8 (FD)

SYMBOLS	MILLIMETERS		INCHES		
SIMBOLS	MIN.	MAX.	MIN.	MAX.	
A	1.35	1.75	0.053	0.069	
A1	0.05	0.25	0.002	0.010	
D	4.90		0.193		
E1	3.90		0.153		
E	5.80	6.20	0.228	0.244	
L	0.40	1.27	0.016	0.050	
b	0.33	0.51	0.013	0.020	
e	1.27		0.50	00	
D1	2.06		0.081		
E2	2.06		0.081		